Search results for "Diatomic molecule"
showing 10 items of 86 documents
Bond Dissociation Energies for Diatomic Molecules Containing 3d Transition Metals: Benchmark Scalar-Relativistic Coupled-Cluster Calculations for 20 …
2017
Benchmark scalar-relativistic coupled-cluster calculations for dissociation energies of the 20 diatomic molecules containing 3d transition metals in the 3dMLBE20 database ( J. Chem. Theory Comput. 2015 , 11 , 2036 ) are reported. Electron correlation and basis set effects are systematically studied. The agreement between theory and experiment is in general satisfactory. For a subset of 16 molecules, the standard deviation between computational and experimental values is 9 kJ/mol with the maximum deviation being 15 kJ/mol. The discrepancies between theory and experiment remain substantial (more than 20 kJ/mol) for VH, CrH, CoH, and FeH. To explore the source of the latter discrepancies, the …
Quantum-chemical determination of Born–Oppenheimer breakdown parameters for rotational constants: the open-shell species CN, CO+ and BO
2013
The quantum-chemical protocol for computing Born-Oppenheimer breakdown corrections to rotational constants in the case of diatomic molecules is extended to open-shell species. The deviation from the Born-Oppenheimer equilibrium rotational constant is obtained by considering three contributions: the adiabatic correction to the equilibrium bond distance, the electronic contribution to the moment of inertia requiring the computation of the rotational g-tensor, and the so-called Dunham correction. Values for the Born-Oppenheimer breakdown parameters of CN, CO+, and BO in their (2)sigma(+) electronic ground states are reported based on coupled-cluster calculations of the involved quantities and …
Nuclear anapole moment interaction in BaF from relativistic coupled-cluster theory
2018
We present high accuracy relativistic coupled cluster calculations of the P-odd interaction coefficient $W_A$ describing the nuclear anapole moment effect on the molecular electronic structure. The molecule under study, BaF, is considered a promising candidate for the measurement of the nuclear anapole moment, and the preparation for the experiment is now underway [Altunas et al., Phys. Rev. Lett. 120, 142501 (2018)]. Influence of various computational parameters (size of the basis set, treatment of relativistic effects, and treatment of electron correlation) on the calculated $W_A$ coefficient is investigated and a recommended value of 147.7 Hz with an estimated uncertainty of 1.5% is prop…
Size-consistent ab initio calculation of the electric quadrupole moment of Cl2
2003
Abstract The molecular electric quadrupole moment ( Θ ) of Cl 2 has been calculated using SDCI, and (SC) 2 -SDCI wave functions as well as CCSD, CCSD(T), and CC3 methods. All these correlation methods are single reference. All of them, but SDCI, are free of the size-extensivity error. The variation of Θ from the separated atoms to the equilibrium region is reported. The present results leads to an estimated value of 2.3520 a.u. (10.55 × 10 −40 Cm 2 ) corresponding to a CC(3) calculation at the CBS approach and including the ro-vibrational and thermal averaging corrections. This value is compatible with two experimental values and points to one of them as slightly more reliable.
A modified ansatz for explicitly correlated coupled-cluster wave functions that is suitable for response theory
2009
A modified ansatz for explicitly correlated coupled-cluster wave functions with a single correlation factor is set forward. It is based on the fixed amplitude ansatz of Ten-no [Chem. Phys. Lett. 398, 56 (2004)] to which an extra term is added that allows for the explicitly correlated description of singly excited configurations. The new approach has been implemented for coupled-cluster singles and doubles with the aid of automated techniques. Numerical results are presented for vertical excitation energies, and ground and excited state equilibrium distances and harmonic frequencies of diatomics. The new approach is shown to provide a nearly unbiased description of ground and predominantly s…
Ab initio quasi-relativistic calculations on angular momentum and magnetic couplings of molecular electronic states.
2002
Abstract We formulate an ab initio method of quasirelativistic calculations on angular momentum and magnetic transition matrix elements between adiabatic electronic states of molecules. Our approach is based on the construction of a state-selective effective Hamiltonian and transition density matrices by means of the multireference many-body perturbation theory. Pilot applications to the evaluation of B 0 + u → B ″1 u predissociation matrix elements in I 2 and interactions in the B 0 + u ∼ B 1 u complex of Te 2 are reported.
Compact two-electron wave function for bond dissociation and Van der Waals interactions: A natural amplitude assessment
2014
Electron correlations in molecules can be divided in short range dynamical correlations, long range Van der Waals type interactions and near degeneracy static correlations. In this work we analyze for a one-dimensional model of a two-electron system how these three types of correlations can be incorporated in a simple wave function of restricted functional form consisting of an orbital product multiplied by a single correlation function $f(r_{12})$ depending on the interelectronic distance $r_{12}$. Since the three types of correlations mentioned lead to different signatures in terms of the natural orbital (NO) amplitudes in two-electron systems we make an analysis of the wave function in t…
Optical Shielding of Destructive Chemical Reactions between Ultracold Ground-State NaRb Molecules
2020
Polar quantum gases represent promising platforms for studying many-body physics and strongly correlated systems with possible applications e.g. in quantum simulation or quantum computation. Due to their large permanent electric dipole moment polar molecules in electric field exhibit strong long-range anisotropic dipole-dipole interactions (DDIs). The creation and trapping of ultracold dipolar diatomic molecules of various species are feasible in many experimental groups nowadays. However long time trapping is still a challenge even in the case of the so called nonreactive molecules which are supposed to be immune against inelastic collisions in their absolute ground state [1] . Various hyp…
A comparison of excited state properties for iterative approximate triples linear response coupled cluster methods
2001
Abstract A computational study of the potential energy curves of the 1 Π state of BH, 1 Π state of CH + , 1 Σ u and 1 Π u states of C 2 , 1 Π state of CO, and 1 Π g and 1 Σ − u states of N 2 is carried out with the CC3 and CCSDT-3 corrections to EOMEE-CCSD. Good agreement in structure, vibrational frequencies, and excitation energies of these iterative triples-corrected methods with respect to experiment is found for most of these examples. However, deficiencies in the approximate treatment of triples is evident for BH and CH + .
Equation-of-motion coupled-cluster methods for ionized states with an approximate treatment of triple excitations.
2005
The accuracy of geometries and harmonic vibrational frequencies is evaluated for two equation-of-motion ionization potential coupled-cluster methods including CC3 and CCSDT-3 triples corrections. The first two Sigma states and first Pi state of the N2 +, CO+, CN, and BO diatomic radicals are studied. The calculations show a tendency for the CC3 variant to overestimate the bond lengths and to underestimate the vibrational frequencies, while the CCSDT-3 variant seems to be more reliable. It is also demonstrated that the accuracy of such methods is comparable to sophisticated traditional multireference approaches and the full configuration interaction method.